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Ab initio parameterized valence force field for the structure and energetics of amorphous
SiOx (0 � x � 2) materials
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We present a modified valence force field model for the structure and energetics of amorphous silicon suboxides
(a-SiOx , 0 � x � 2). The parameters are optimized to fit the results from cluster and periodic density-functional
theory (DFT) calculations of various model structures. The potential model well reproduces the DFT energetics
of various a-SiOx systems for all O:Si composition ratios. We also examine how the choice of force fields
affects the atomic-level description of phase separation in a-SiOx and a-Si/a-SiO2 interfaces using a continuous
random network model-based Monte Carlo approach. The results highlight the critical role of the relative rigidity
between Si and SiO2 matrices in determination of the structural properties of the Si/SiO2 composite system, such
as interface bond topology, degree of phase separation, and abruptness of the interface.
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I. INTRODUCTION

Amorphous silicon-rich oxides (a-SiOx , 0 � x � 2) have
garnered great attention, not only from their unique properties,
but also because of their potential technological importance
in various electronic, optoelectronic, and energy applications.
Amorphous phases lack long-range order or well-defined
atomic structure and are thermodynamically less favorable
than their corresponding crystalline phases.1,2 As a conse-
quence of lattice distortion and variations in composition,
a-SiOx materials typically have different properties from their
crystalline counterparts and also Si/SiO2 multiphase systems.
The properties of a-SiOx can be controlled by varying the
O:Si composition ratio and incorporating various impurities.
For instance, hydrogenated a-SiOx materials exhibit visible
room-temperature photoluminescence (PL) properties and a
higher photosensitivity than other materials with comparable
optical gaps, making them viable candidates for Si-based
optoelectronic applications.3,4 In addition, doping with boron
or phosphorous atoms might enable realization of light-
emitting diodes.5

Si suboxides may undergo phase separation to yield
oxide-embedded Si nanoparticles during high-temperature
annealing; the Si nanoparticles (np-Si) can be amorphous
or crystalline depending on the annealing temperature.6,7

The np-Si/a-SiO2 system emits visible PL with high effi-
ciency at room temperature, while luminescence from bulk
crystalline Si (c-Si) is negligible as a result of its indirect
band structure. The discovery of Si-based luminescence has
generated considerable interest in its potential application
to integrated optoelectronic devices.8–10 In addition, oxide-
embedded Si nanoparticles have been envisioned as possible
discrete storage elements in nonvolatile flash memories.11,12

Previous studies13 have suggested that the performance of
np-Si–based devices would be determined by a complex
combination of the following attributes: Si particle size, shape,
and crystallinity; Si/SiO2 interface structure and strain; and
near-interface defects (bonding, chemical, and structural). It
is therefore important to develop a detailed understanding of

the structure, strain, and composition of a-SiOx materials and
their interfaces.

An atomic-level understanding of a-SiOx materials derived
from experimental methods has thus far remained elusive,
in part because of the limited capabilities of common in-
strumentation for direct characterization. A complementary
computational effort has been made in the development of
atomistic models of amorphous materials in a variety of
systems. First-principles methods have achieved widespread
usage in characterization of the structure and properties
of complex materials, including multicomponent amorphous
alloys.14 Despite the enormous growth in computational
power, highly disordered materials are often prohibitively ex-
pensive to address exclusively with first-principles calculations
because realistic models of their structures typically contain
complex topologies requiring large numbers of atoms. As an
alternative to first-principles calculations, computationally less
expensive classical force fields have been widely used; various
types of interatomic potentials have been developed for Si,15–21

SiO2,22–25 and Si/SiO2 composites.26–29

The primary liability in application of force fields is
their limited transferability. Even for Si, no single force
field model could provide an adequate description of the
physical and chemical properties in all relevant states (from
bulk [crystal, amorphous, liquid] surfaces to clusters) of
this prototypical semiconductor; consequently, it would be
reasonable to conclude that generation of a single force
field that comprehends all pertinent phenomena is likely
an insurmountable task. Therefore, it would be necessary
to develop application-specific potentials that, for instance,
can be robustly applied to describe the atomic structure and
energetics in designated systems.

Amorphous silicon-rich oxides, a-Si,1,2,30 and a-SiO2
31,32

are well known to form respective Si and SiO4 tetrahedral
networks characterized by both long-range disorder and
short-range order, similar to that of their parent crystals. At
Si/SiO2 interfaces, previous experiments33,34 have demon-
strated extremely low densities (typically between 1010 to
1012 cm−2) of interface defects, suggesting an almost-perfect
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bonding network across the interface. Likewise, a-SiOx–based
systems can also be well-represented by fully coordinated
random networks in which Si and O atoms are four- and
twofold coordinated, respectively. To generate a structural
model of a-SiOx , molecular dynamics (MD) or Monte Carlo
(MC) methods coupled to various interatomic potentials have
been widely used, as detailed in the following work: (1) ab
initio MD for a-Si,35 a-SiO2,36 and planar c-Si/a-SiO2

37; (2)
classical MD for a-Si,21 a-SiO2,25 planar c-Si/a-SiO2,27,29,38,39

and np-Si/a-SiO2
40,41; and (3) classical MC for a-Si,16,42

a-SiO2,22 a-SiOx ,43 planar c-Si/a-SiO2,26,44,45 and np-Si/a-
SiO2.45–47 Ab initio MD permits accurate description of atomic
arrangements, but its utility is restricted to small systems and
short timescales because of steep computational requirements.
Classical MD permits simulation of relatively large systems,
but the same timescale limitations could compromise complete
structural relaxation. Classical MC based on a continuous
random network (CRN) model is a proven approach for
the construction of fully relaxed a-SiOx structures.26,42,46,48,49

Within the CRN model, an amorphous system is relaxed via a
large number of bond transpositions using Metropolis Monte
Carlo (MMC) sampling,42 where the validity of the final
structure also strongly depends on application of a reliable
force field. Since this approach does not require description
of bond formation/scission, simple and computationally less
expensive valence force field (VFF) models like the three-
body, harmonic Keating-like (KT) potentials have been widely
used, permitting simulation of larger systems. Effective VFF
models are currently available for prediction of minimum-
energy configurations of fully coordinated Si- and SiO2-based
materials when the bond lengths and angles do not significantly
deviate from their equilibrium values16,22; however, relatively
little effort has been undertaken to assess and improve the
accuracy of existing VFF models for a-SiOx–based systems.

In this paper, we present a valence force field based on
a modified Keating model for the structure and energetics
of amorphous Si-rich oxide (a-SiOx , 0 � x � 2) materials.
We optimized the parameters to fit the results from cluster
and periodic density-functional theory (DFT) calculations of
various model structures. In order to evaluate the reliability
of our potential, we prepared model structures for a-SiOx

(x = 0, 0.5, 1, 1.5, and 2) using CRN-MMC simulations based
on the present potential and compared their energetics with
the energetics from DFT, earlier Keating-like, and modified
Stillinger-Weber potential calculations. We also examined how
the choice of force fields affects the atomic-level description
of phase separation in a-SiOx and a-Si/a-SiO2 interfaces. We
prepared model structures for oxide-embedded amorphous
Si nanoparticles using CRN-MMC simulations based on the
present potential and earlier Keating-like potential models
and subsequently characterized the structural models in terms
of concentration of suboxide states (Si1+, Si2+, Si3+), strain
energy profiles, and ring-size distributions. To explain the
observed structural properties, we used relative rigidities of
bulk a-Si and bulk a-SiO2, which were obtained by calculating
their mechanical properties. Based on these results, we assess
the role of strain in determining the structural properties of the
Si/SiO2 composite system, such as interface bond topology,
degree of phase separation, and abruptness of the interface.

II. CALCULATION METHODS

A. Valence force field model for a-SiOx (0 � x � 2)

Within the VFF model, the relative energies of a-SiOx

materials are evaluated in terms of the increase of total
energy (�Etotal) with respect to the Si-Si and Si-O bond
energies obtained from c-Si and c-SiO2 (β-cristobalite in this
work), respectively. The �Etotal can be given by the sum of
the changes in strain energy (�Estrain) and suboxide energy
(�Esubox):

�Etotal = �Estrain + �Esubox. (1)

The suboxide (penalty) energy (�Esubox) represents an
increase in the Si-Si and Si-O bond energies arising from the
various oxidation states of Si.50 For a given Si-rich suboxide
system, �Esubox can be obtained by adding the suboxide
penalties of individual Si atoms with intermediate oxidation
states (+1, +2, +3). Using periodic c-SiOx (x = 0.5, 1.0,
and 1.5) models (see Fig. 2 in Ref. 51), our DFT calculations
predict the suboxide energies of 0.54, 0.57, and 0.29 eV for
Si1+, Si2+, and Si3+, respectively, which is in good agreement
with previous DFT results.50–52

Strain energy (�Estrain) arises from lattice distortions
involving bond stretching, bond angle distortion, torsion
resistance, and nonbonding interactions. The structure,
stability, and phonon properties of bulk disordered Si and
SiO2 materials have been successfully studied using a
Keating-like VFF model:

Estrain = 1

2

∑

i

kb(bi − b0)2 + 1

2

∑

i,j

kθ (cos θij − cos θ0)2,

(2)

where kb (in eV/Å2) and kθ (in eV) refer to the bond-stretching
and angle-distortion force constants, respectively, bi and b0

(in Å) are the lengths of the ith bond and the equilibrium
(reference) bond, respectively, and θij and θ0 (in degrees) are
the angles subtended by the ith and j th bonds (to avoid double
counting) and the equilibrium bond angle, respectively. The
three-body harmonic potential offers a satisfactory description
of the strain of Si and SiO2 materials, particularly when the
departure of the bond lengths and bond angles from their
respective equilibrium values is insignificant.16,22

For strain and suboxide energy variations, Keating-like
(KT) potentials have been applied to examine the network
topology and properties of a-Si and a-SiO2.26,44,46 In particular,
the KT potential parameterized by Tu and Tersoff26 [referred
to as KT(TT), hereafter] has been widely employed to
determine the atomic structure and energetics of amorphous
Si/SiO2 multiphase systems, including planar c-Si/a-SiO2

interfaces26,53 and np-Si/a-SiO2.46 For the present work, first
Lee and Hwang optimized KT potential parameters based on
the geometries and energies from density-functional theory
(DFT) calculations [referred to as KT(LH) to distinguish it
from KT(TT)]. This optimization procedure is detailed in the
following section.

Earlier studies emphasized the importance of kθ for the
Si-O-Si bond angle to achieve a realistic description of bulk
a-SiO2. The relatively small kθ (Si-O-Si) value in the KT(TT)
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potential appears to result in a large discrepancy between
experimental and simulation results for the Si-O-Si bond angle
distribution in the highly distorted a-SiO2 network, which
was corrected by making the kθ (Si-O-Si) term stronger.22

Compared to bulk a-SiO2, we expect the SiO2 structure near
the Si/SiO2 interface to be more distorted due to strain arising
from the lattice mismatch between Si and SiO2. Therefore,
an improved description of Si-O-Si bond angle distortion is
likely warranted to obtain more realistic structural models and
energetics for Si/SiO2 interface systems. Likewise, other angle
distortion force constants [such as kθ (O-Si-O), kθ (Si-Si-O),
and kθ (Si-Si-Si)] might also require reexamination, since
bond topologies and strain energies in a-SiOx materials are
mainly governed by three-body contributions. In addition, the
equilibrium Si-Si and Si-O bond lengths are known to be a
function of Si charge state.34,50,52 It is reasonable to infer that
optimization of b0(Si-Si) and b0(Si-O) values in terms of Si
oxidation state might be influential; however, we will later
show that equilibrium bond length variations are insignificant,
and their influence on the suboxide structure is also
negligible.

B. Determination of force field parameters

The potential parameters are determined by fitting VFF
total energy data to DFT values in the following sequence,
which corresponds to an increase in the degrees of freedom
of each training set: (1) b0(Si-Si) and b0(Si-O); (2) kb(Si-Si)
and kb(Si-O); (3) θ0(Si-Si-Si), θ0(O-Si-O), θ0(Si-O-Si), and
θ0(Si-Si-O); (4) kθ (Si-Si-Si); (5) kθ (Si-O-Si) [and also nθ (Si-
O-Si), power of the three-body term]; (6) kθ (O-Si-O); and (7)
kθ (Si-Si-O). Table I summarizes the force constant values for
both the KT(LH) and KT(TT) potentials. Table II likewise
summarizes calculated and tabulated b0 values values together
with θ0 values used.

For determination of b0(Sim-Sin) and b0(Sim-O), where m
and n indicate the oxidation states of respective Si atoms, we
used periodic crystalline Si0, Si1+, Si2+, Si3+, and Si4+ lattice
models (see Fig. 2 in Ref. 51) as well as cluster models for
all oxidation states (see Fig. 1). When m = n, the b0 values
can be obtained from periodic calculations. Assuming that
the variation of b0 with Si oxidation state is identical for the
periodic and cluster calculations, we tabulated the b0 values
when m �= n based on the cluster calculation results:

b0(m,n) = b0(n,n) {B0(m,m) − B0(m,n)} + b0(m,m) {B0(m,n) − B0(n,n)}
B0(m,m) − B0(n,n)

, (3)

where b0 and B0 refer to the equilibrium bond lengths
from our periodic and cluster calculation results, respectively.
The b0(Sim-O) value decreases with increasing m, possibly
attributed to a reduction in the contribution of covalency,
consistent with previous ab initio calculations.34,50,52 We
observe the contribution of oxidation state to insignificantly
affect the resultant a-SiOx bond topology, as corroborated by
minor perturbations (substantially less than 0.1 Å) in average
Sim-Sin and Sim-O bond lengths.

For kb(Si0-Si0) and kb(Si4+-O) parameters, we calculate
variations in the total energies of c-Si (with 8 atoms) and
c-SiO2 (β-cristobalite with 8 SiO2 units) by varying their
respective lattice constants from −5% to 5%. For DFT
calculations, a Monkhorst-Pack (8 × 8 × 8) k-point mesh
was used for Brillouin-zone sampling. Optimized values of

TABLE I. Optimized Keating-like potential force constants for
the present work [referred to as KT(LH)] together with the optimized
parameters of Ref. 26 [KT(TT)]. The kb values are expressed in
eV/Å2, and the kθ values are in eV.

KT(LH) KT(TT)

kb(Si-Si) 9.08 9.08
kb(Si-O) 31.39 27.00
kθ (Si-Si-Si) 1.80 3.58
kθ (O-Si-O) 10.25 4.32
kθ (Si-Si-O) 4.17 3.93
kθ (Si-O-Si) 2.62a 0.75

aThe power of the three-body term is 2.2 (see the text).

kb(Si0-Si0) = 9.08 eV/Å2 and kb(Si4+-O) = 31.90 eV/Å2 are
close to corresponding KT(TT) values as shown in Table I. For
c-Si and c-SiO2, the variation of �E computed by KT(LH),
KT(TT), and DFT calculations is shown in Figs. 2(a) and
2(b), respectively, as a function of the magnitude of bond
strain. For both model systems, the VFF values are in good
agreement with DFT values near equilibrium. The potential

TABLE II. Calculated Si-Si and Si-O equilibrium bond distances
from bulk structures with corresponding cluster values given in
parentheses. When m �= n, b0(Sim-Sin) values for bulk structures
are calculated based on the cluster calculation results using Eq. (3)
(see the text). The b0 values are given in Å, and the θ0 values are in
degrees.

b0 θ 0

Si0-Si0 2.362 (2.355) Si-Si-Si 109.5
Si0-Si1+ 2.373 (2.365) O-Si-O 109.5
Si0-Si2+ 2.375 (2.368) Si-Si-O 109.5
Si0-Si3+ 2.345 (2.346) Si-O-Si 180.0
Si1+-Si1+ 2.384 (2.379)
Si1+-Si2+ 2.385 (2.381)
Si1+-Si3+ 2.358 (2.359)
Si2+-Si2+ 2.385 (2.382)
Si2+-Si3+ 2.359 (2.360)
Si3+-Si3+ 2.335 (2.341)
Si1+-O 1.645 (1.642)
Si2+-O 1.632 (1.632)
Si3+-O 1.613 (1.619)
Si4+-O 1.593 (1.597)
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FIG. 1. Representative cluster models used for calculating Si-Si
and Si-O bond lengths. Cluster models for other oxidation states (see
Table II) are obtained by adjusting the number of O atoms from
these models. For calculating Si-O bond lengths, the two Si atoms
neighboring the central O atom retain the same oxidation state.

dependence of kb on Si oxidation state can also be examined
using cluster model calculations. From our results, kb appears
inversely proportional to b0; however, the magnitude of kb

variation is sufficiently small, so we can safely disregard the
oxidation effect.

With the equilibrium bond angle of θ0(Si-Si-Si) = 109.5◦,
we optimized the force constant kθ (Si-Si-Si) using four
independent 64-atom a-Si supercells. The optimal value was
obtained through minimization of the cross-validation error
(ξ ), which is given by:

ξ 2 = 1

N

N∑

n=1

(
E

(n)
DFT − E

(n)
FF

)2
, (4)

where E
(n)
DFT and E

(n)
FF refer to the DFT and FF energies,

respectively, of the nth of N total a-Si models in the training set;

FIG. 2. Variations (�E) in total energies {from DFT, present
work optimization [KT(LH)], and optimization of Ref. 26 [KT(TT)]}
per bond of (a) c-Si (with 8 atoms) and (b) c-SiO2 (β-cristobalite with
8 SiO2 units) as a function of the ratio (L/L0) of the strained lattice
constant (L) to the equilibrium lattice constant (L0).

in this case, the energies were evaluated based on fully-relaxed
structures (with the same network) from each calculation. The
same procedure was applied in optimization of other kθ values,
unless stated otherwise. Our optimized kθ (Si-Si-Si) value of
1.795 eV is only half of the corresponding KT(TT) value
of 3.58 eV. This is not surprising considering that a-Si is
softer than c-Si, while the KT(TT) value well reproduces the
crystalline Si properties.

For the remaining three-body force constants, equilibrium
bond angles were set at θ0(O-Si-O) = 109.5◦, θ0(Si-Si-O) =
109.5◦, and θ0(Si-O-Si) = 180◦, which are well established
for the Si-O system. Given that both Si-O-Si and O-Si-O bond
angle distortions contribute to the energetics of a-SiO2, we
first determined kθ (Si-O-Si) using a cluster model structure
(see Fig. 3 inset) and then computed kθ (O-Si-O) using
four independent, periodic a-SiO2 model structures (each
containing 64 SiO2 units).

From our DFT cluster calculations (see Fig. 3), the total
energy only slightly changes as θ (Si-O-Si) is reduced from
180◦ to 150◦, but it rapidly increases for θ (Si-O-Si) < 120◦.
The KT(TT) values of kθ (Si-O-Si) = 0.75 eV and nθ (Si-O-
Si) = 2 (power of the corresponding three-body term) show
reasonable agreement with DFT results for 150◦ � θ (Si-O-Si)
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FIG. 3. Variations (�E) in total energies {from DFT, present
work optimization [KT(LH)], and optimization of Ref. 26 [KT(TT)]}
of the cluster model (inset) as a function of Si-O-Si bond angle (θ ).

� 180◦, yet they exhibit significant underestimation for θ (Si-
O-Si) < 150◦. Many previous studies54–56 have demonstrated
that the amorphous silica structure has a wide Si-O-Si angle
distribution that may vary from 120◦ to 180◦. Note that
θ (Si-O-Si) can be around 130◦ and 160◦, respectively, in
three- and four-membered rings in a-SiO2. To more rigorously
describe the strain energy variation associated with the wide
distribution of the O-subtended bond angle, we adjusted not
only kθ (Si-O-Si), but also nθ (Si-O-Si), in the three-body term,
kθ (cos θ − cos θ0)nθ . By fitting VFF total energies to DFT
values from the cluster and subsequent periodic calculations,
we obtained kθ (Si-O-Si) = 2.62 eV and nθ (Si-O-Si) = 2.2.
Note that these parameters are comparable to kθ (Si-O-Si) =
2.0 eV with nθ (Si-O-Si) = 2 from a careful reoptimization
for a-SiO2 bulk phases by Alfthan et al.22 Concomitantly, we
obtained kθ (O-Si-O) = 10.25 eV, which is also much larger
than 4.32 eV from KT(TT), using four independent, periodic
a-SiO2 model structures. We also adjusted kθ (Si-O-Si) and
kθ (O-Si-O) simultaneously using four independent, periodic
a-SiO2 model structures but found that the optimized values
were essentially unchanged. Finally, we determined kθ (Si-Si-
O) = 4.165 eV using four independent, periodic a-SiO models
consisting of 64 Si-O units, which is close to the KT(TT) value
of 3.93 eV.

C. Metropolis Monte Carlo simulations

All a-SiOx structures we present were generated by CRN-
MMC simulations (in the isothermal and isochoric ensemble)
combined with either KT(LH) or KT(TT) potentials. The
atomic structure of each model system evolves toward ther-
modynamic equilibrium though MC bond-switching moves,42

which we implemented using the extended WWW (Wooten-
Winer-Weaire) bond transposition scheme.16 A bond switching
move involves two bonds, A-B and C-D, across four unique
atoms (A, B, C, and D) and forms two new bonds B-D and A-C
by severing bonds A-B and C-D. A sampling process selects
one of five different combinations of four distinct atoms (A,
B, C, and D): Si(A)-Si(B)-Si(C)-Si(D); O(A)-Si(B)-O-Si(C)-

O(D); Si(A)-Si(B)-Si(C)-O(D); Si(A)-Si(B)-O(C)-Si(D); and
O(A)-Si(B)-Si(C)-O(D), where atoms A and C, as well as
atoms B and D, must not be directly connected by a bond
prior to the switching maneuver. For O(A)-Si(B)-O-Si(C)-
O(D), the O atom between atom B and atom C is first
selected randomly, and then the remaining atoms are randomly
identified. For the remaining combinations, either atom B or
C is first selected randomly, and then the remaining atoms
are randomly identified. The acceptance or rejection of each
bond-switching move is determined using probability P =
min[1, exp(−�E/kBT)], where �E is the change in �Etotal

resulting from the bond-switching move. Before and after
each bond-switching move, the system is relaxed by Polak
and Ribiere’s conjugate-gradient method.57

During the MMC simulation, we included an additional
repulsive term (Er ) in �Etotal to effectively prevent nonbonded
atoms from interacting.16,26 Inclusion of Er is particularly
important in a-SiOx topological determination, likely because
the flexible Si-O-Si linkages permit much more structural de-
grees of freedom than fourfold-coordinated a-Si. The repulsive
contribution is given by:

Er = γ
∑

mn

(d2 − rmn)3, (5)

where m and n denote atoms which are neither 1st nor 2nd
neighbors in the network, rmn is the distance between two
atoms (evaluated only for rmn < d2), and d2 is a cutoff
distance. We used the following parameters: d2(Si-Si) = 3.84
Å, d2(Si-O) = 3.2 Å, d2(O-O) = 2.61 Å, and γ = 0.5
eV/Å3, referring to Ref. 16 and 22. The Er term becomes
negligible for the well-relaxed a-SiOx models presented in this
paper.

The following procedure was used for construction of each
a-SiOx (0 � x � 2) structure model. First, we began with
a randomized Si configuration in a periodic supercell with
volume (V) given by V = VSi × NSi, where NSi denotes
the number of Si atoms, and VSi is the unit volume of a-Si.
The randomized Si configuration was sequentially relaxed at
temperatures of 5000, 4000, 3000, 2000, and 1000 K with
approximately 1000 × NSi trials for each temperature. Next,
NO (=xNSi) O atoms were randomly incorporated into Si-Si
bonds in the a-Si model, resulting in an intermediate a-SiOx

model with volume (V) given by V = VSi × (NSi − NO/2) +
VSiO2 × NO/2, where VSiO2 denotes the unit volume of a-SiO2.
VSi and VSiO2 were extracted from corresponding experimental
densities of 2.28 g/cm3 and 2.2 g/cm3, respectively.30,58 This
intermediate configuration was further relaxed in a thermal
sequence of 5000, 4000, 3000, 2000, and 1000 K with
approximately 200(NSi + NO) trials for each temperature.
Each time the simulation temperature was decremented, the
lowest-energy configuration from the completed temperature
step was selected as the initial configuration for the ensuing
simulation step. The MC simulations were conducted in a
canonical ensemble (NVT); after the initial (highly distorted or
nearly random) structures were relaxed, we also conducted the
simulations allowing volume relaxation in all three directions,
but the key structural properties from the isobaric simulations
were nearly indistinguishable from the isochoric cases.
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D. Density-functional theory calculations

All DFT calculations herein were performed using the
well-established plane-wave program, VASP,59 within the
generalized gradient approximation of Perdew and Wang
(GGA-PW91).60 Vanderbilt-type ultrasoft pseudopotentials61

were adopted to describe the interaction between ion cores
and valence electrons. Valence electron wave-functions were
expanded using a plane-wave basis set with a kinetic-energy
cutoff of 400 eV. For Brillouin zone sampling, we used a (2 ×
2 × 2) Monkhorst-Pack k-point mesh for all periodic a-SiOx

supercell models with 64 Si and 64x O atoms (sufficient for
disordered systems) and �-point sampling for cluster models,
unless noted otherwise. All structures were fully relaxed
using the conjugate gradient method until residual forces on
constituent atoms became smaller than 5 × 10−2 eV/Å.

III. RESULTS AND DISCUSSION

A. Energetics of amorphous SiOx: Comparisons between force
field models and DFT

We evaluated the reliability of the force fields considered in
this work for the energetics of a-SiOx materials by comparison
with DFT results. Besides KT(LH) and KT(TT), we also
looked at extended Stillinger-Weber (SW) potentials without
and with considering the suboxide penalty as proposed by
Watanabe et al.27,28; for convenience, the former and latter are
referred to as WT1 and WT2, hereafter.

First, we prepared model structures for a-SiOx (x = 0, 0.5,
1, 1.5, and 2) using MC simulations based on the KT(LH)
potential without including �Esubox to avoid suboxide phase
separation into Si and SiO2. For x = 0.5, 1, and 1.5, the
prevailing Si oxidation states are +1, +2, and +3, respectively,
as listed in Table III; in the model structures, O atoms are
almost evenly distributed. For each x, we considered four
independent structures, each of which contains 64 Si atoms
with 64x O atoms.

Figure 4 shows the variations of �Êtotal (=�Etotal per
Si atom) with x from DFT, KT(LH), KT(TT), WT1, and
WT2 calculations. The DFT result (distribution) in Fig. 4
resembles a parabola with maximum at x ≈ 1, driven mainly by
suboxide penalty contribution (later demonstrated in Fig. 5).
Among the four classical potentials, KT(LH) exhibits the best
agreement with DFT for all a-SiOx models. KT(TT) tends to

TABLE III. Si suboxide statistics for a-SiO0.5 (64 Si and 32 O
atoms), a-SiO1.0 (64 Si and 64 O atoms), and a-SiO1.5 (64 Si and
96 O atoms) structures used in Figs. 4 and 5(a). These structures
were constructed from CRN-MMC simulations based on the KT(LH)
potential excluding suboxide penalty energies. All values provided
represent sampling over four independent structures in percentages
(mean ± standard deviation).

a-SiO0.5 a-SiO1 a-SiO1.5

Si0 26.6 ± 4.0 3.1 ± 1.1 0.4 ± 0.7
Si1+ 49.2 ± 6.1 26.6 ± 2.9 1.6 ± 1.6
Si2+ 22.2 ± 2.0 42.2 ± 4.3 21.8 ± 4.3
Si3+ 1.6 ± 1.1 23.4 ± 2.2 50.0 ± 6.6
Si4+ 0.4 ± 0.7 4.7 ± 2.9 26.2 ± 3.0

FIG. 4. Relative total energies per Si atom (�Êtotal) {from
DFT, present work optimization [KT(LH)], optimization of
Ref. 26 [KT(TT)], and extended Stillinger-Weber potentials proposed
without (WT1) and with (WT2) suboxide penalties in Refs. 27
and 28} for a-SiOx (x = 0, 0.5, 1.0, 1.5, and 2.0) (64 Si and 64x O
atoms) structures. All structures were constructed from CRN-MMC
simulations based on the KT(LH) potential without suboxide penalty
energies. For each x, four independent structures are represented.
For x = 0.5, 1.0, and 1.5, the distributions of Si oxidation states are
summarized in Table III.

overestimate and underestimate the total energies of a-Si and
a-SiO2, respectively. As expected, WT1 (with no suboxide
penalty contribution) yields no significant variation in �Êtotal

with x, while WT2 (for which the pair-like interaction term
was modified in order to describe the suboxide penalty28,62)
significantly overestimates the suboxide contribution. In ad-
dition, compared to DFT, both WT1 and WT2 are likely to
underestimate �Êtotal in a-Si while showing relatively good
agreement in a-SiO2.

Figure 5(a) presents the average strain energies per Si
(�Êstrain) from KT(LH), KT(TT), and DFT calculations,
which were obtained by subtracting the average suboxide
penalty energies (in the inset) from the average total ener-
gies (in Fig. 4). For each x, average values represent four
independent structures considered. Overall, KT(LH) and DFT
are in good agreement. Compared to KT(LH) and DFT,
KT(TT) yields a noticeably larger �Êstrain value in a-Si, where
�Êstrain monotonically decreases with increasing O content
and becomes smallest in a-SiO2. The �Estrain overestimation
of KT(TT) for a-Si is mainly attributed to the larger kθ (Si-
Si-Si) value of 3.58 eV relative to 1.795 eV in KT(LH),
while the underestimated �Estrain in a-SiO2 is due to the
smaller kθ (Si-O-Si) and kθ (O-Si-O) values of 0.75 eV and
4.32 eV relative to the respective values of 2.62 eV (with
nθ = 2.2) and 10.25 eV in KT(LH). Note that the two-body
force constants, kb(Si-Si) and kb(Si-O), are comparable for
KT(TT) and KT(LH).

We repeated this procedure using model structures with par-
tial phase separation that were obtained from MC simulations
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TABLE IV. Si suboxide statistics for a-SiO0.5 (64 Si and 32 O
atoms), a-SiO1.0 (64 Si and 64 O atoms), and a-SiO1.5 (64 Si and
96 O atoms) structures used in Fig. 5(b). These structures were
constructed from CRN-MMC simulations based on the KT(LH)
potential including suboxide penalty energies. All values provided
represent sampling over four independent structures in percentages
(mean ± standard deviation).

a-SiO0.5 a-SiO1 a-SiO1.5

Si0 57.8 ± 1.6 31.6 ± 1.7 10.2 ± 2.6
Si1+ 12.1 ± 2.8 6.6 ± 2.3 2.3 ± 1.7
Si2+ 8.6 ± 2.3 10.9 ± 1.1 8.2 ± 4.2
Si3+ 15.2 ± 2.3 31.6 ± 2.3 35.9 ± 8.2
Si4+ 6.3 ± 1.1 19.1 ± 1.3 43.4 ± 5.2

including �Esubox in KT(LH). For each x, four independent
structures were considered. As summarized in Table IV, the
Si oxidation state statistics clearly indicate the formation of Si
and SiO2 phases in the suboxide systems. Figure 5(b) shows the
variations of �Êstrain (and �Êsubox in the inset) as a function of

FIG. 5. Average relative strain (�Êstrain) and suboxide (�Êsubox,
insets) energies per Si based on KT(LH), KT(TT), and DFT
calculations for a-SiOx (x = 0, 0.5, 1.0, 1.5, and 2.0) models
constructed from CRN-MMC simulations based on the KT(LH)
potential (a) excluding and (b) including suboxide penalty energies.
For each x, four independent structures are represented. For x = 0.5,
1.0, and 1.5, the distributions of Si oxidation states for (a) and (b) are
summarized in Tables III and IV, respectively.

O:Si ratio (x) from KT(LH), KT(TT), and DFT calculations.
For the suboxide systems, KT(LH) shows excellent agreement
with DFT, but the KT(TT) values significantly deviate from
the DFT and KT(LH) values.

It is worth noting that �Estrain increases while �Esubox

drops in the phase separation of suboxides, as seen from
the separation-induced changes of �Êstrain and �Êsubox

[Figs. 5(a) vs 5(b)]. For instance, the phase separation results
in an increase in �Êstrain from 0.127 to 0.225 eV/Si when
x = 1 (i.e., a-SiO), while �Êsubox decreases by 0.227 eV/Si.
These results suggest that the role of strain might be important
in determining the atomic configurations, particularly in the
Si/SiO2 interface region, although the phase separation is
mainly driven by the reduction of suboxide penalty energy.51

B. Phase separation: a-Si cluster embedded in a-SiO2 matrix

In this section, we examine how the atomic-level de-
scription of phase separation in a-SiOx is affected by the
choice of force fields. In particular, based on the KT(LH)
and KT(TT) potentials, we attempt to assess the role of
strain in determination of the atomic configuration near the
Si/SiO2 interface. For both KT(LH) and KT(TT) potentials,
we constructed five independent phase-separated model struc-
tures using CRN-MMC simulations. The structure generation
procedure adopted the following steps for each model: (1)
construction of a 480-atom a-Si supercell; (2) insertion of 720
O atoms into Si-Si bonds from the supercell perimeter inward
with concurrent volume compensation (following V = VSi ×
(NSi − NO/2) + VSiO2 × NO/2 from Sec. II C); (3) execution
of O hopping moves at 100 K over 200(NSi + NO) trials to
induce further phase separation (only �Esubox was considered,
not �Estrain, to expedite phase separation); (4) implementation
of bond-switching moves within the oxide phase through a
thermal sequence of 5000, 4000, 3000, 2000, and 1000K over
approximately 200(NSi + NO) trials for each temperature;
and (5) completion of bond-switching maneuvers throughout
the supercell (both phases) in consecutive thermal stages
of 3000, 2000, and 1000 K over approximately 200(NSi +
NO) trials for each temperature. Each time the simulation
temperature changed, the lowest-energy configuration from
the prior simulation was adopted as the initial configuration
for the subsequent simulation stage. This extensive approach
provides a thorough description of phase separation in the
a-SiO1.5 suboxide that leads to the formation of an a-Si cluster
embedded in a a-SiO2 matrix. Example configurations from
our simulations are presented in Fig. 6.

By comparing the phase-separated structures from the
KT(LH) and KT(TT) potential-based simulations, we find
important discrepancies in the degree of phase separation
(identifiable by the distribution of intermediate Si oxidation
states), as well as the distribution of ring sizes. In Table V,
we summarize the relative concentrations of Si oxidation
states for the KT(LH) and KT(TT) models. While Si3+ is
the dominant suboxide state in both models because of its
low suboxide energy (0.29 eV) relative to those of Si1+
(0.54 eV) and Si2+ (0.57 eV), the overall concentration of
suboxide states (Si1+, Si2+, Si3+) is higher in the KT(LH)
model than the KT(TT) model. In addition, Table V shows that
each suboxide state is more abundant in the KT(LH) model
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FIG. 6. (Color online) Atomic configurations for (a) KT(LH) and (b) KT(TT) models for the a-Si cluster embedded in a-SiO2 matrix
(np-Si/a-SiO2). Gray wireframe represents O atoms and Si4+ states that comprise the a-SiO2 phase. Yellow, blue, red, and gray balls represent
Si0, Si1+, Si2+, and Si3+ states, respectively.

relative to the KT(TT) model. To provide some quantification
of the abruptness of the phase transition interface regions,
we calculated ratios of Si/SiO2 states (Si0,Si4+) to suboxide
states (Si1+,Si2+,Si3+) as 0.78 and 0.81 for the KT(LH)
and KT(TT) models, respectively. These results suggest
that the KT(LH) model should yield more graded Si/SiO2

interface profiles with smaller a-Si cluster phases than KT(TT)
models.

To further characterize the suboxide transition interface, we
provide energy and Si suboxide distribution profiles in Figs. 7
and 8, respectively, along radial directions from the a-Si cluster
centers for both models. As shown in Fig. 7, the a-SiO2 region
in the KT(TT) model exhibits much higher �Êstrain values,
but less Si suboxide penalty contribution, than the KT(LH)
model; however, the KT(TT) model a-Si region exhibits lower
�Êstrain values than observed in the KT(LH) model. We also
observe that both a-Si and a-SiO2 regions in the proximity of
the Si/SiO2 interfaces yield higher strain energies than bulk
a-Si and a-SiO2.

In Fig. 8, the radial profiles of Si suboxide distribution clar-
ify the inferences about phase transition abruptness extracted
from the suboxide distribution results compiled in Table V.

TABLE V. Si suboxide statistics sampled over five independent
KT(LH) and KT(TT) models of np-Si/a-SiO2 (480 Si and 720 O
atoms) with quantities expressed as percentages (mean ± standard
deviation).

State KT(LH) KT(TT)

Si0 17.3 ± 0.3 19.0 ± 0.8
Si1+ 2.7 ± 0.3 1.7 ± 0.9
Si2+ 3.7 ± 0.8 2.0 ± 0.5
Si3+ 15.3 ± 0.9 15.0 ± 1.5
Si4+ 61.0 ± 0.7 62.3 ± 1.0

For each model, we define a nominal interface radius, r0, that
effectively defines a reference for the Si/SiO2 interface,

r0 =
∑

r(Si1+) + ∑
r(Si2+)

n(Si1+) + n(Si2+)
, (6)

where r(Sim) is the distance of a Si atom with oxidation
state m from the cluster center, n(Sim) is the number of Sim,
and the summations are conducted over all four independent
samples studied. The Si1+ and Si2+ states can be interpreted
as perimeter Si atoms of the a-Si phase with one and two
O neighbors, respectively. For the Si3+ oxidation state, the
increased spread in radial distribution of the KT(LH) model
over the KT(TT) model is readily apparent in Fig. 8. For both
models, we observe a prominent peak in the Si3+ oxidation
state just outside of r0. The KT(LH) Si3+ distribution also
exhibits a more graded phase transition interface, since the
KT(LH) model has both a lower peak and a more significant
distribution tail on the a-SiO2 side (r − r0 > 5 Å) when
contrasted to the KT(TT) distribution.

In Fig. 9, we present ring-size distributions for the (a)
total, (b) a-Si, and (c) a-SiO2 components of the KT(LH) and
KT(TT) model structures. For the a-Si and a-SiO2 cases, the
paths composed solely of Si0 and Si4+ atoms are counted as
rings, respectively; for comparison, the ring-size distributions
of bulk a-Si and a-SiO2 are also provided. For a-Si, the
embedded phase contains more five-membered rings in both
models, rather than the energetically favored six-membered
rings, which are most frequently observed in bulk a-Si.
Likewise, the a-SiO2 phase in the two-phase system yields
broader ring-size distributions than in bulk a-SiO2 for both
models. This indicates that the phase-separated Si and SiO2

structures are more strained than their bulk counterparts. We
also notice in the a-Si phase that the KT(LH) model structures
tend to contain more five-membered rings than the KT(TT)
model structures; on the other hand, the latter generally exhibit
broader ring-size distributions than the former in the a-SiO2

phase. This is not surprising considering that the KT(LH)
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FIG. 7. Profiles of (a) strain (�Êstrain) and (b) suboxide (�Êsubox)
energies per Si along radial directions from cluster centers of KT(LH)
and KT(TT) models for np-Si/a-SiO2 (480 Si and 720 O atoms). The
cluster center is defined as the center of mass of Si0 atoms. The
nominal interface radius, r0, is defined in the text. Each data point
represents the average value within a given concentric spherical shell
(2 Å thick) sampled over four independent structures. The two solid,
horizontal lines depict the calculated strain energies for bulk a-Si
and a-SiO2 with 216 Si and SiO2 units, respectively. All energies are
calculated with the KT(LH) potential.

potential over- and underestimates lattice strain in a-SiO2 and
a-Si, respectively, compared to the KT(TT) potential.

C. Mechanical Properties

Our calculations suggest that the relative rigidity between
Si and SiO2 matrices is critical in determination of the Si/SiO2

interface structure. Elastic (or Young’s) modulus (Y) and
bulk modulus (B) are important metrics of the rigidity of
an elastic response. For various a-SiOx compositions, these
two moduli were successfully evaluated by first-principles
calculations using a statistical approach in our previous
work,63 and the endpoint cases (x = 0 and 2) have been
well characterized through experimental measurements.64–69

Additional mechanical properties, such as the Poisson ratio
(ν) and shear modulus (G), can be calculated once Y and
B are known because only two of these four quantities are
independent in isotropic materials.63 We apply our previously

FIG. 8. Profiles of (a) Si1+, (b) Si2+, and (c) Si3+ oxidation state
distributions along radial directions from cluster centers of KT(LH)
and KT(TT) models of np-Si/a-SiO2 (480 Si and 720 O atoms). The
cluster center is defined as the center of mass of Si0 atoms. The
nominal interface radius, r0, is defined in the text. Each data point
represents the average value within a given concentric spherical shell
(2 Å thick) sampled over four independent structures.

reported moduli calculation method to VFF total energy data to
evaluate Y and B based on both KT(LH) and KT(TT) potentials
for a-Si and a-SiO2 in order to quantify the degree of rigidity
in respective a-Si and a-SiO2 matrices.

The elastic (or Young’s) modulus (Y) is calculated by
computing forces and stresses from VFF total energy (E) data
using the following relationships:

Fx = ∂Ex

∂x

∣∣∣∣
x=ε

, (7)

σxx = Fx

A
, (8)

and

Y = σxx

ε
. (9)

Forces along a given direction (Fx) are calculated for each
strain condition (ε) using second-order numerical derivatives
in Eq. (7), normal stresses (σxx) are subsequently evaluated
with Eq. (8) (A represents the supercell face area in the x
direction), and ultimately Young’s modulus is obtained from
Eq. (9) as the ratio of stress to strain in the x direction. To
provide adequate statistical sampling of Y for each structure
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FIG. 9. Ring-size distributions for the (a) a-Si and (b) a-SiO2

regions of KT(LH) and KT(TT) models of np-Si/a-SiO2 (480 Si and
720 O atoms) together with the ring-size distributions for bulk (a)
a-Si and (b) a-SiO2 with 216 Si and SiO2 units, respectively.

sample, Y is evaluated at each condition for −5% � ε � 5%
at 0.5% intervals, and an average Y is obtained.

The bulk modulus (B), which is the three-dimensional
analog of Y, can be calculated from total energy data as

B = V
∂2E

∂V 2

∣∣∣∣
V =Vi

=
∂E/∂V
�V/Vo

= volumetric stress

volumetric strain
, (10)

where Vo is the equilibrium cell volume, σv = �V/Vo is an
arbitrary volumetric strain, and Vi is the cell volume at an
arbitrary σv . Similar to our treatment of Y, B is evaluated at
each condition for −5% � σv � 5% at 0.5% intervals, and an
average B is obtained.

Table VI provides a summary of our mechanical property
calculations along with relevant experimental data for compar-
ison. The KT(LH) and KT(TT) potential-based calculations
exhibit significant differences in Y and B values for both a-Si
and a-SiO2, where the former provides better agreement with
experimental data than the latter. The similar B values for a-Si
from KT(LH) and KT(TT) calculations can be attributed to
nearly identical kb values for the two potentials, suggesting that
the bulk modulus is nearly unaffected by bond angle (Si-Si-Si)
distortions. The remaining disparities for Y and B values in
both a-Si and a-SiO2 between KT(LH) and KT(TT) potentials

TABLE VI. Computed average mechanical properties based on
KT(LH) and KT(TT) (Ref. 26) potentials for ten independent a-Si
(216 Si atoms) and a-SiO2 (216 Si and 432 O atoms) structures.
Strain was applied during mechanical property calculations using the
same KT(LH) and KT(TT) potentials used during the initial CRN-
MMC simulations. Relevant experimental data are also summarized
for comparison.

Y (GPa) B (GPa)

a-Si 124.3 83.4 KT(LH)
158.4 85.7 KT(TT)

125 ± 1 Ref. 64
136 ± 9 Ref. 65

a-SiO2 98.9 40.2 KT(LH)
46.3 21.2 KT(TT)
70 33.3 Ref. 66

76.6 ± 7.2 Ref. 67
73 Ref. 68

144 Ref. 69

can be clearly explained by the aforementioned differences in
kb and kθ .

Considering the disparate nature of a-Si and a-SiO2 in the
local proximity of a Si/SiO2 interface, the relative rigidity
of SiO2 to Si should be an important factor in structural
determination of these interfaces. Since both bond (Si-Si and
Si-O) stretching and angle (Si-Si-Si, O-Si-O, and Si-O-Si)
distortion contribute to Young’s modulus for a-Si and a-SiO2,
we attempt to quantify the relative rigidity between a-Si and
a-SiO2 using Y, rather than B. We evaluate the following
dimensionless number, γ , as a measure of relative rigidity:

γ = Ya-SiO2

Ya-Si
, (11)

where Ya-Si and Ya-SiO2 are the Young’s moduli for bulk
a-Si and bulk a-SiO2, respectively. Our calculations show
that a-Si (Y = 158.4 GPa) from KT(TT) is slightly more
rigid than a-Si (Y = 124.3 GPa) from KT(LH), while a-SiO2

(Y = 46.3 GPa) from KT(TT) is far less rigid than a-SiO2

(Y = 98.9 GPa) from KT(LH). From these Y values, we obtain
γKT(LH) = 0.8 and γKT(TT) = 0.3 for the KT(LH) and KT(TT)
potentials, respectively. This indicates that the relative rigidity
of SiO2 to Si is significantly underestimated by KT(TT). The
smaller γ KT(TT) value implies that application of the KT(TT)
potential will likely lead to structural rearrangement in the
a-SiO2 phase driven by minimization of strain exerted on
the a-Si phase, ultimately resulting in excess distortion in the
a-SiO2 structure. In contrast, the larger γ KT(LH) value implies
that a similar driving force for a-SiO2 structural distortion is
significantly reduced for the KT(LH) potential. This provides a
plausible explanation for the contrasting strain energy profiles
of the KT(LH) and KT(TT) potentials as depicted in Fig. 7(a).

The occurrence of relatively more graded (abrupt) Si/SiO2

interfaces for the KT(LH) (KT(TT)) model structures can
be explained by the difference in rigidity between a-Si and
a-SiO2 phases. Phase separation of a-SiOx into Si and SiO2

phases is driven by minimization of the suboxide energy,
but it concurrently creates additional distortion from lattice
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mismatch between Si and SiO2; as a result, the increase
of strain energy from lattice mismatch tends to temper
the formation of abrupt boundaries. In application of the
KT(TT) potential, the excessively pliable a-SiO2 phase permits
disproportionate lattice distortion on the a-SiO2 side of the
interface, which leads the system to form relatively abrupt
Si/SiO2 interfaces. In contrast, in application of the KT(LH)
potential, the relatively more rigid a-SiO2 side of the interface
is more resistive to accommodation of lattice distortion, so
formation of relatively graded Si/SiO2 interfaces is favored
(see Fig. 8).

The CRN-MMC approach with a simple VFF model
can provide a reasonable description of the defect-free,
minimum-energy configurations of various Si/SiO2 composite
systems, which will further allow thorough studies of their
optical and electrical properties and also the nature and
behavior of defects and impurities in the complex system.
However, the Si/SiO2 interface structure would also be
influenced by process conditions; for instance, a significant
amount of compressibility can be found in the SiO2 region near
the interface during oxidation of Si nanowires, when the rate
of oxidation is greater than the rate of structural relaxation.70

In those cases, not only thermodynamic equilibrium but
also kinetics might need to be considered. Moreover, the
Si/SiO2 interface often contains a non-negligible amount of
coordination defects due largely to lattice-mismatch–induced
strains. To take into account the kinetic effect, it would
be necessary to use more advanced methods such as
molecular dynamics with a more sophisticated potential
model.29,71–73

IV. SUMMARY

We present a valence force field based on a modified
Keating model for the structure and energetics of amorphous
Si-rich oxide (a-SiOx , 0 � x � 2) materials. The potential
parameters for the strain energy contribution were optimized
to fit DFT results for various cluster and periodic model
structures. Suboxide energies were determined using DFT
calculations of periodic c-SiOx (x = 0.5, 1.0, and 1.5) models,
which are 0.54, 0.57, and 0.29 eV for Si1+, Si2+, and Si3+,
respectively. We particularly focused on precise optimization
of bond angle force constants such as kθ (Si-O-Si), kθ (O-Si-O),
kθ (Si-Si-O), and kθ (Si-Si-Si) since bond topologies and strain
energies in a-SiOx are mainly governed by the three-body
contributions. In this work, to more rigorously describe
the strain energy variation associated with a wide Si-O-Si
angle distribution (particularly in a highly strained Si/SiO2

composite system), we adjusted not only kθ (Si-O-Si) but also
nθ (Si-O-Si) in the three-body term, kθ (cos θ − cos θ0)nθ . We
also considered variations in the equilibrium bond lengths such
as b0(Si-Si) and b0(Si-O) in terms of Si oxidation state, but
the contribution of oxidation state turns out to insignificantly
affect the resultant a-SiOx bond topology. For the energetics
of various a-SiOx (0 � x � 2) systems, the present potential
model agrees well with DFT for all O:Si composition ratios,
while earlier Keating-like and modified Stillinger-Weber po-
tential models exhibit significant deviations from the present
model and DFT. These results emphasize the importance of

correctly describing the wide Si-O-Si angle distribution by
making the corresponding bond-bending term stronger as
well as softening of the Si lattice in the amorphous phase
by making Si-Si-Si bond-bending term weaker. We also find
that phase separation in a-SiOx results in an increase in the
strain energy, while the suboxide penalty decreases. Although
the phase separation is mainly driven by the reduction of
suboxide energy, our calculations demonstrate that the role of
strain is important in determining the atomic configurations,
particularly in the highly strained Si/SiO2 interface region.
Our study also suggests that the relative rigidity between
Si and SiO2 matrices is critical in determination of the
Si/SiO2 interface structure. As such, as a measure of relative
rigidity, we introduced and evaluated a dimensionless number
γ = Ya-SiO2/Ya-Si, where Ya-Si and Ya-SiO2 are the Young’s
moduli for bulk a-Si and bulk a-SiO2, respectively. From the
present potential model, the value of γ is estimated to be 0.8
in the a-Si/a-SiO2 system, and it decreases in the c-Si/a-SiO2

case. A smaller γ implies larger structural rearrangement in
the SiO2 part driven by minimization of strain exerted on the
Si part, ultimately resulting in more distortion in the a-SiO2

structure, with a broader ring-size distribution as well as a
less graded Si/SiO2 interface layer with a lower concentration
of suboxide states (Si1+,Si2+,Si3+). The present potential
model coupled with the CRN-MMC method can be used to
create structural models (free of coordination defects) for
complex a-SiOx–based materials, which will further allow
thorough studies of the optical and electrical properties of
these materials and also the nature and behavior of defects
and impurities in the a-SiOx system. The VFF model could
further be improved by taking into account additional penalty
energy terms associated with possible coordination defects
(such as divalent/trivalent Si and monovalent O defects) to
address their effects on the structural properties and energetics.
Moreover, by reoptimizing the force parameters, the simple
valence bond model can be applied to study the mechan-
ical, thermal, and vibrational properties of various a-SiOx

systems.
While the CRN-MMC approach with a simple VFF model

is designed to determine thermodynamically equilibrated
configurations, the structure of Si/SiO2 composites can be
often a function of process condition, for instance, during
Si oxidation and SiO2 deposition on Si; in those cases, not
only thermodynamic equilibrium but also kinetics might need
to be considered. To take into account the kinetic effect,
it would be necessary to use more advanced methods such
as molecular dynamics with a more sophisticated potential
model.
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